CTP431: Fundamentals of Computer Music

Fourier Series

KA1ST Graduate School of Culture Technology

Juhan Nam

Goals

- Representing periodic signals with sinusoids
- Sinusoids
- Fourier Series
- Complex sinusoids
- Additive synthesis

Fourier Series

- A periodic waveform can be represented with a finite set of sinusoids
- We can find the frequency components of the signal

Sinusoids

- A sinusoid is any function having the following form:

$$
x(t)=A \sin (\omega t+\phi)=A \sin (2 \pi f t+\phi)
$$

- A : peak amplitude
- $\omega(=2 \pi / P=2 \pi f)$: angular frequency (rad/sec)
- P : period (sec)
- f : frequency ($1 / \mathrm{sec}$ or Hz)
- ϕ : initial phase (rad)
- $\omega t+\phi$: instantaneous phase

Plotting Sinusoids

In-phase and Quadrature Sinusoidal Components

- A sinusoid with an arbitrary initial phase can be expressed with the sum of a sine function with phase zero ("in-phase" component) and a cosine function with phase zero ("quadrature" component)

$$
\begin{aligned}
x(t)=A \sin (\omega t+\phi)= & A \sin (\omega t) \cos (\phi)+A \sin (\phi) \cos (\omega t) \quad \cos (\omega t)=\sin (\omega t+\pi / 2) \\
= & {[A \cos (\phi)] \sin (\omega t)+[A \sin (\phi)] \cos (\omega t) } \\
& =A_{1} \cos (\omega t)+A_{2} \sin (\omega t)
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=A \sin (\phi) \\
& A_{2}=A \cos (\phi)
\end{aligned} \longrightarrow \begin{aligned}
& A=\sqrt{A_{1}^{2}+A_{2}^{2}} \\
& \phi=\tan ^{-1}\left(A_{1} / A_{2}\right)
\end{aligned} \longrightarrow
$$

The peak amplitude and initial phase are determined by the amplitudes of the in-phase and quadrature components.

In-phase and Quadrature Sinusoidal Components

Fourier Series

- A periodic signal $x(t)$ with period P seconds can be represented with harmonic sinusoids

$$
x(t)=\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t-\phi_{k}\right) \quad \omega_{k}=\frac{2 \pi}{P} k \quad(k=1,2, \ldots)
$$

... Harmonic frequencies

Fourier Series Coefficients

- A periodic signal $x(t)$ can be expressed with the in-phase and quadrature components

$$
x(t)=\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t-\phi_{k}\right)=\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{1, k} \cos \left(\omega_{k} t\right)+A_{2, k} \sin \left(\omega_{k} t\right)
$$

- The Fourier series coefficients $A_{1, k}$ and $A_{2, k}$ can be obtained by projecting $x(t)$ onto the in-phase and quadrature sinusoids

$$
A_{1, k}=A_{k} \cos \left(\phi_{k}\right)=\frac{2}{P} \int_{0}^{P} x(t) \cos \left(\omega_{k} t\right) d t
$$

$$
A_{2, k}=A_{k} \sin \left(\phi_{k}\right)=\frac{2}{P} \int_{0}^{P} x(t) \sin \left(\omega_{k} t\right) d t
$$

$$
\longrightarrow A_{k}=\sqrt{{A_{1, k}}^{2}+A_{2, k}^{2}} \quad \quad \phi_{k}=\tan ^{-1}\left(A_{2, k} / A_{1, k}\right)
$$

Complex Sinusoids

- Express the in-phase and quadrature sinusoid components as real and imaginary terms of complex numbers
- The two components are regarded as a 2 D vector

$$
s(t)=s_{r e}(t)+j \cdot s_{i m}(t)=\cos (\omega t)+j \cdot \sin (\omega t)
$$

- Euler's identity

$$
\cos (\omega t)+j \sin (\omega t)=e^{j \omega t}
$$

- This can be proved by Taylor's series
- If $\omega t=\pi, e^{j \pi}+1=0$ ("the most beautiful equation in math")

Complex Sinusoids

- Through the lens of complex sinusoid, cosine or sine functions always have a pair of positive and negative frequencies

$$
\cos (\omega t)=\frac{e^{j \omega t}+e^{-j \omega t}}{2} \quad \sin (\omega t)=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}=\frac{e^{j \omega t-\pi / 2}-e^{-j \omega t+\pi / 2}}{2}
$$

Fourier Series with Complex Sinusoids

- A periodic signal $x(t)$ can be expressed with complex sinusoids

$$
\begin{aligned}
x(t) & =\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t-\phi_{k}\right)=\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{k}\left(\frac{e^{j\left(\omega_{k} t-\phi_{k}\right)}+e^{-j\left(\omega_{k} t-\phi_{k}\right)}}{2}\right) \\
& =\frac{A_{0}}{2}+\sum_{k=1}^{N} A_{k}\left(\frac{e^{j \omega_{k} t} e^{-j \phi_{k}}+e^{-j \omega_{k} t} e^{j \phi_{k}}}{2}\right)=\sum_{k=-N}^{N} C_{k} e^{j \omega_{k} t}
\end{aligned}
$$

$$
\begin{aligned}
& A_{k} e^{-j \phi_{k}} \\
& =A_{k} \cos \left(\phi_{k}\right)-A_{k} \sin \left(\phi_{k}\right) \\
& =A_{1, k}-j A_{2, k}
\end{aligned} C_{k}=\left\{\begin{array}{cl}
\frac{A_{0}}{2} & (k=0) \\
\frac{A_{1, k}-j A_{2, k}}{2} & (k>0) \\
\frac{A_{1,-k}+j A_{2,-k}}{2} & (k<0)
\end{array}\right] \quad C_{k}=\frac{1}{P} \int_{0}^{P} x(t) e^{-j \omega_{k} t} d t
$$

Fourier Series with Complex Sinusoids

$$
\begin{aligned}
& (k>0) \quad \begin{aligned}
\frac{A_{1, k}-j A_{2, k}}{2} & =\frac{1}{2}\left(\frac{2}{P} \int_{0}^{P} x(t) \cos \left(\omega_{k} t\right) d t-j \frac{2}{P} \int_{0}^{P} x(t) \sin \left(\omega_{k} t\right) d t\right) \\
& =\frac{1}{P}\left(\int_{0}^{P} x(t)\left(\cos \left(\omega_{k} t\right)-j \sin \left(\omega_{k} t\right)\right) d t\right)=\frac{1}{P} \int_{0}^{P} x(t) e^{-j \omega_{k} t} d t \\
(k<0) \quad \frac{A_{1,-k}+j A_{2,-k}}{2} & =\frac{1}{2}\left(\frac{2}{P} \int_{0}^{P} x(t) \cos \left(\omega_{-k} t\right) d t+j \frac{2}{P} \int_{0}^{P} x(t) \sin \left(\omega_{-k} t\right) d t\right) \\
& =\frac{1}{P}\left(\int_{0}^{P} x(t)\left(\cos \left(\omega_{k} t\right)-j \sin \left(\omega_{k} t\right)\right) d t\right)=\frac{1}{P} \int_{0}^{P} x(t) e^{-j \omega_{k} t} d t
\end{aligned} \\
& (k=0) \quad \frac{A_{0}}{2}=\frac{1}{P} \int_{0}^{P} x(t) d t
\end{aligned}
$$

To wrap up

- The Fourier Series Coefficients can be obtained as complex numbers

$$
C_{k}=\frac{1}{P} \int_{0}^{P} x(t) e^{-j \omega_{k} t} d t
$$

- The peak amplitude of the k th sinusoid: $\left|C_{k}\right|=\sqrt{\operatorname{Re}\left\{C_{k}\right\}^{2}+\operatorname{Im}\left\{C_{k}\right\}^{2}}$
- The initial phase of the k th sinusoid: $\angle C_{k}=\tan ^{-1}\left(\operatorname{Im}\left\{C_{k}\right\} / \operatorname{Re}\left\{C_{k}\right\}\right)$
- The original signal can be reconstructed by the complex sinusoid with the complex coefficients

$$
x(t)=\sum_{k=-N}^{N} C_{k} e^{j \omega_{k} t}
$$

$$
x(t) \text { has both the positive and }
$$ negative frequency components

Understanding the Additive Sum

- A periodic signal $x(t)$ can be expressed with complex sinusoids

$$
\begin{aligned}
& x(t)=\sum_{k=-N}^{N} C_{k} e^{j \omega_{k} t}=\sum_{k=-N}^{N}\left|C_{k}\right| e^{j \angle C_{k}} e^{j \omega_{k} t}=\sum_{k=-N}^{N}\left|C_{k}\right| e^{j\left(\omega_{k} t+\angle C_{k}\right)} \\
&=C_{0}+\sum_{k=1}^{N}\left(C_{k} e^{j \omega_{k} t}+\overline{C_{k} e^{j \omega_{k} t}}\right)=C_{0}+2 \operatorname{Re}\left\{\sum_{k=1}^{N} C_{k} e^{j \omega_{k} t}\right\}_{1}=C_{0}+2 \operatorname{Re}\left\{\sum_{k=1}^{N}\left|C_{k}\right| e^{j\left(\omega_{k} t+\angle C_{k}\right)}\right\} \\
& \quad \begin{array}{l}
\text { Complex } \\
\text { Domain }
\end{array}
\end{aligned}
$$

Projection onto the real axis
$x(t)$ is the real part of the sum of the rotating complex sinusoids

Additive Synthesis in the Complex Domain

- Sawtooth wave
- $C_{k}=\frac{1}{k}(-1)^{k}(k=1,2,3, \ldots)$

$$
\frac{2 \sin \theta}{-\pi} \odot
$$

$\frac{2 \sin 3 \theta}{-3 \pi}$
-

$\frac{2 \sin 4 \theta}{4 \pi}$

- Square wave
- $C_{k}=\frac{1}{k}(k=1,3,5, \ldots)$

Source: https://en.wikipedia.org/wiki/Fourier_series

Additive Synthesis in the Complex Domain

- Interactive Fourier Series and Additive synthesis
- https://codepen.io/anon/pen/JPGJMK
- https://teropa.info/harmonics-explorer/

